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16. BANDWIDTH AND SIMDUCE AS SIMULATOR FIDELITY CRITERIA

DAVID KEY

Many characteristics define a visual system’s quality:
the field of view, the resolution, the detail, and, what
will talk about, the delays in response. In addition, I will
talle about how to make an overview of the total visual
cuing quality.

Bandwidth has been mentioned several times today. I
will define it in the context of handling qualities. I will
show how the visual delays affect the bandwidth and the
handling qualities, and how we could use that to assess
the simulation fidelity. The first paper this morning raised
many questions about how much fidelity you need for
transfer of training. The report the author referred to then
(ref. 1) was one I worked on back in 1980. We asked the
same questions 11 years ago. My field is handling quali-
ties, not training, so I still do not have the answers. But 1
will give some hint of how I think you can interpret
fidelity.

Figure 1 shows a page out of the handling-quality
specification ADS-33 (ref. 2), and defines bandwidth. For
a rate-response type, the bandwidth is the lower of the
gain margin or the phase margin. For an attitude-
command/attitude-hold system, you use the phase margin.

Figure 2 shows the bandwidth boundaries in the han-
dling quality specification. Target acquisition and tracking
requirements are not appropriate for many civil aircraft.
More appropriate would be the boundaries for “all other
MTEs in Usable Cue Environment UCE = 1.” UCE is
defined in reference 2. Essentially, a UCE greater than 1
implies degraded visibility, and I will limit this discussion
to the context of day visual requirements.

Figure 3 shows the UH-60 Black Hawk helicopter’s
frequency response, gain, and phase. If we put 100 msec
of pure delay into the system, it does not affect the gain,
but it does affect the phase. Reading the bandwidth (it
turns out that the Black Hawk is gain-margin limited), the
result can be plotted on the roll bandwidth requirement
(fig. 4). With 100 msec of delay, the response moves
much closer to the Level 2 boundary. Thus, with an extra
100 msec of delay, the Black Hawk would have changed

from a really good (Level 1) almost into the region of
degraded handling qualities (Level 2). The levels of
flying-qualities concept (ref. 2) is based on the Cooper-
Harper Pilot Rating Scale (ref. 3). The Cooper-Harper
pilot rating scale provides a measure of subjective evalua-
tions of handling qualities. Ratings from 1 to 3.5 imply
that the aircraft is good, has desirable performance, and an
acceptable workload. At ratings between 3.5 and 6.5, the
aircraft is not so good (Level 2). The pilot can still do the
job, but with only adequate performance and the workload
is increasing. Above 6.5, the aircraft is so bad that the
pilot can no longer do the task, but should not lose control
(Level 3).

So, we can see that with an added 100-msec delay the
Black Hawk response goes from very good to marginal,
that is, almost into the Level 2 region. Now what does that
mean in the simulation world? Figure 5 is a timing dia-
gram for the VMS at Ames Research Center. Starting at
the pilot’s controls, there are some delays or dynamics in
the artificial feel system, then there are some measure-
ment delays, then signals go into the main host computer,
which has a 20-msec cycle time. Finally, the computed
aircraft response comes out to drive the CGI and the
motion base. Nominally, the CGI operates at 60 Hz and
effectively takes 2.5 cycles, so it adds an 83-msec delay.
The motion base can add an equivalent delay of 70 msec
in pitch and roll and up to 160 msec in heave. The motion
dynamics are not truly a pure delay, but can be repre-
sented as such for the frequency range of interest (<3 Hz).

When the pilot moves the control, he can only tell
how the helicopter responds by the response of the visual
and motion system. As far as he is concerned, this is the
airplane. He cannot distinguish delays in the visual and
motion cuing from delays in the mathematical model—
that is, from the aircraft being simulated. This hypothesis
sounds obvious, but we have performed an experiment to
demonstrate the fact (ref. 4). The configurations tested are
shown in figure 6. The fastest configuration had a roll
damping Lp = 4. This would have a bandwidth = 4 with

147



SIMULATOR FIDELITY CRITERIA

Phase Delay:

AP2wgg
T T btk
p $7.3(2w)gg)
Note: if phase is nonlinear between wgo
and 2wigo, rp shall be determined

from a linear least squares fit 1o
p/;ase curve between w gp and 20/&0

Rate 'Response -ijég’

wgw Is lesser of wgwga(” and wgWphase

C';éur/g' ;

For ACAH, if wgy, gain <“YE8Wppase s

or.if wgw,g, IS ma‘erermmafe,
the rotorcroft may be P/O prone
for super-precision tasks or’

aggressive pifot technique.

’

Atmude Command/Atmude Ho(d Respcnsa ‘I’ypes( ACAHT

waw ¥ wEthqf“

n Hr
1 .
I 10 e e ;
B d |
Xilds d
(X=8,¢,y) B
(XistOf 83)

L LR -

{deg)

|

Frequency (rad/sec)

(log scale)

Figute 1. Definitiof of bandwidth and phase delay.

148

LI TR TRNTE ST TR W YO TN TR AT OO



SIMULATOR FIDELITY CRITERIA

0 S
o 1 2 3 4 5
() w gwg (rad/sec)

ol= :
0 1 2 3 4 5
©) w BWG WEW, (rad/sec)

Figure 2. Handling-qualities boundaries for pitch and roll (hover). (a) Target acquisition and tracking (pitch), (b) target
acquisition and tracking (roll), (c) all other MTEs - UCE = 1 and fully attended operations (pitch), (d) all other MTEs -
UCE = 1 and fully attended operations (roll), (e) all other MTEs - UCE > 1 and/or divided attention operations (pitch
and roll).
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Figure 4. Effect of delay on bandwidth and phase delay. (a) Target acquisition and tracking (pitch), (b) target acquisition
and tracking (roll), (c) all other MTEs - UCE = 1 and fully attended operations (pitch), (d) all other MTEs - UCE = 1 and
fully attended operations (roll), (e) all other MTEs - UCE > 1 and/or divided attention operations (pitch and roll).
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Figure 6. Handling-qualities variations with visual delays. (a) All other MTEs - UCE = | and fully attended operations
(pitch), (b) all other MTEs - UCE = 1 and fully attended operations (roll). Attitude command response types. (¢} All
other MTEs - UCE = 1 and fully attended operations (pitch), (d) all other MTEs - UCE = 1 and fully attended operations

(roll). Rate response types.

no delay. However, there were some delays from the
computation times, so actually it has a bandwidth of
about 2.8. '

Dick McFarland of Ames has generated a scheme for
compensating for the CGI delay (ref. 5) in such a way that

the visual delay can be made zero. To investigate the
effects of delay in the visual system compared with the
mathematical model (aircraft response), the basic visual
delay was compensated or, alternatively, a delay was
added further downstream as though it was part of the
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mathematical model. Those two points lie on top of each
other on the bandwidth plot (fig. 6). Similar combinations
of delays up to 0.383 msec were investigated. The
handling-qualities pilot rating was 3.2 (Level 1) with no
delay, and with 0.383 delay the pilot rating was 8. So it is
clear that the pilot ratings do indeed degrade as delays are
increased, and the ratings correlate well with the
ADS-33 bandwidth boundaries. Also, as hypothesized,
the pilot cannot tell the difference between delays in the
visual and delays in the mathematical model.

When we consider motion cues, the situation is a bit
more complicated. The helicopter model was a very sim-
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ple first-order one. Figure 7 shows the Bode plot for the
motion. If we add the stick dynamics, the phase and gain
are changed as shown. But the motion cue not only has a
delay, it has to have washout to limit excursions; this
changes the response even more. Consider the cab
response between | rad/sec and the bandwidth (5 rad/sec),
the region that is really of interest. The gain is about 8 dB
down (a factor of about 6). Roll would be down by a fac-
tor of about 2. Phase matches the model exactly at about
2 rad/sec. At 1.0 rad/sec, there is about 45° of phase lead,
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Figure 7. Motion base frequency response (pitch angle résponse to stick force).
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Figure 8 shows pilot ratings obtained with and with-
out 83 msec of delay, with and without motion. The first
point to make is that for each of these tasks motion is bet-
ter than no motion. The next point is a question: How do
you combine the visual and motion dynamics? Should the
visual and motion be matched or should we try to com-
pensate for the visual time delay? We do not have an an-
swer to this, but do plan an experiment to investigate it
later in 1991. In the meantime, it would seem reasonable
to set the visual delay to match the fastest axis of motion.

Back to the question of how much delay should be
allowed in the visual system? My suggestion is to allow
the stick-to-visual bandwidth to degrade to Level 2
(figs. 3(c) and 3(d)), but do not go out of the Level 2
region. Level 3 means the pilot cannot do the task. Pre-
sumably, if the handling qualities are so bad a test pilot
cannot fly the task, then it is unlikely to give a very good
transfer of training. If the helicopter itself is Level 3, you
can match the helicopter, but if you are training to fly a
Level 3 helicopter, there are other problems that need
fixing before routine training starts! These points are
summarized in table 1. Note that a fixed value of delay
such as 100 ms may or may not cause these boundaries to
be violated, depending on the bandwidth of the helicopter
being simulated.

Now consider the question of how to assess overall
visual cue fidelity. In developing the handling quality
specifications (ref. 2) we had to address flying qualities in
a degraded visual environment, such as when flying at
night with night-vision goggles. Many parameters such as
field of view, resolution, scene detail, and response
dynamics influence the cue fidelity so that it is currently
impossible to compute a cue fidelity. As an alternative we
invented a subjective scheme for evaluating how well the
pilot could see and called it the usable cue environment
(UCE). The procedure is essentially as follows: Take a
helicopter with good Level 1 rate response in day visual
conditions and assess its capabilities in the degraded
visual environment. Thus, on an appropriate dark night
with clouds, rain, etc., with the vision aids to be used,
perform precisely defined tasks and ask the pilot to rate
how precise and aggressive he can be. The process is
summarized in figure 9. To get an assessment of the simu-
lator visual cues, we can apply the same procedure
(table 2). We call this SIMulator Day UCE,; that is where
“SIMDUCE” comes from. If the cues are as good as they
would be during the daytime, SIMDUCE = 1. If the
SIMDUCE = 2 or 3, it is roughly equivalent to having

SIMULATOR FIDELITY CRITERIA

Level 2 or Level 3 handling qualities, so the SIMDUCE
number could be treated the same way as the degradation
caused by delays. That is, SIMDUCE = 2 is probably sat-
isfactory for training. If SIMDUCE = 3, it is not satisfac-
tory. We applied this routine to the NASA VMS simulator
and obtained the data shown in figure 10. This shows the
average and standard deviations and an overall UCE of 3.
The VMS visual is not inherently that bad; we were trying
to get degraded UCE so had put in “fog.” For the FAA to
incorporate the SIMDUCE concept into an advisory circu-
lar, they will have to define a Level 1 rate-response type
helicopter mathematical model. This should be a standard-
ized model, and it could be made very simple—TI do not
expect manufacturers would mind too much.

My conclusions can be summarized as follows:

1. For simulator delays, the visual and motion
delays should be set approximately equal. Then the
bandwidth from the stick, all the way through to the visual
response, should be no worse than ADS-33C Level 2. A
single value of delay such as 100 msec will not achieve
this and should not be used.

2. Use the SIMDUCE procedure to get an overall
calibration of the cue fidelity and it should be 1 or 2,
not 3.

Are there any questions?

Questions

MR. McFADDEN: I won’t leave you without a ques-
tion, David. What frequency response was the VMS when
you used it there? You showed a frequency response. Do
you recall?

MR. KEY: I am not sure I understand your question.

MR. McFADDEN: Where was your 45° phase
margin?

MR. KEY: Okay. The 45° phase on the cab response
to stick was around 2 rad/sec.

MR. McFADDEN: Thank you.

MR. KEY: That is not the response of the VMS to a
pure input to the VMS motion. That response is through
the washout. This is the way we had it set up with the
washout.

MR. McFADDEN: I understand. You could have
made it better.

DR. TISCHLER: Right.

MR. GREEN: The question I have is how do you
treat saturation or the limited throw relative to the cab? In
other words, of the motion base.

155



SIMULATOR FIDELITY

HQR

2
1

HQR

HQR

2

1

Figure 8. Comparison of handling qual'ities with and without motion. (a) Hover, (b) vertical translation, (c) pirouette,

CRITERIA

I | | -

| - | SR |

| N R |

(a) Delay Delay Delay

Visual No Modél1

“Visual No  Modal |
(b) Deldy Delay Delay

“Visud No Modsl
(c) Delay Delay Dslay

= - - 7 -~
e - and 6 ad
2%
= e - - 5 =
3

8 , 4F 4t .

L 4 6 L 3 4
- - - 2 -

{ | 1 [ L. I i | A -

Visual No Modsl
(d) Celay Delay Delay

,,,,,, 1 | T P
: Visual No Model
(g) Delay Delay Delay

Wﬂ\r{lsual Né ' Modsl 1
(¢) Dolay Delay Delay

mV!s.uaI ‘No  Medl
(f) Delay Delay Deldy

= ma

-‘- min.

= min.

number of evals.

(5 avg. (fixed tass)

} avg. {moving basa)

Na. nigxt 1o symbol Indicates

(d) slalom, (e) bobup, (f) dash/quickstop, (g) sidestep:

156




SIMULATOR FIDELITY CRITERIA

”

e|qeulele Jou sj |
uoisioald Jualsisuod pue ejqissod

suoj19a4109 ajjuab pue jjews Ajuo )

\

f e} Ajuo si
uo|sioeld puB eoUapP|UOD YIM
| SU0[}924100 paljui|| 8}ew Ued |

poob s| uojsjoaid pue |
8oUBPIJUOD YIIM SUOJ1094100
| @s1984d pue aAajssaibbe eyew ued |

"HO(] JO uUOnRUILLINA( "6 2MIL]

— HO0Od

— divd

— JO0Y

1

N M < 1O

ajel |jeuone|suel) jedIaA -
ajel |euolle|Suel] |BJUOZIIOH -
apmmy -

:Buljj043u09 uj

on|ssaibby -
asioald -
:aq o} Aljiqy

S3divd 107d

(s.HOA) S.DNILYH IND IVNSIA

HOA 3ANLILLY
s v € ¢ 1

1=30N
¢

2=30N €

mumO:/ b
S

HOA 31vH
TJVNOILVISNVHL

sAejds|p/pie uoisia yim

deisapis
[828p/|800Y
anenolid
BuipueT jesiuap
J9AOH
:uioped

JuawiuollAug

lensjA papesbag pwy ajey

L 19naT

157



Snsal FON/IOA 01 am3id

HOA 3ANLILLY
s v € ¢ 1

SIMULATOR FIDELITY CRITERIA

F €=30N
£=30N ,
| GG’V = HOA jeuoijejsueld | afelony
Z=395N 1€ uoA aLwvu
TYNOLLVISNVHL c-.V - m0> 0c=#_=< Qmmh0><
£=300\ 4
L]
g
6 09’y 14 g g g 4 [enopwEuusy,
89’ (13 4 9y | 9v | 8 € sy PPNy dnsapig
w €9'p 14 UN g g gy [PUO[IEEURL, | HORRIRBQ
€8’ SL'E € UN S £ vy || epmmy | uonempEoy
sL ey v £ g S gy [euonvEIeLy,
oL | 08'€ 14 £ S £ v | epmmy onenong
114 9y Sy | UN g S 4 [euopepUeLy
6L 00y gy | UN g £ gt epmmyy | Bupuw
14 09y sy | g7V S S 14 [puonvEueLL,
o | STy sy | 97 g ¢ | sLe opnINY 3an0H
wopspreq | (7w pwe) a | a|o|a]|v]
PIPUIIS | YOA oRemay (yond gowe) YDA 30 *dAL YOA yeeL

138



SIMULATOR FIDELITY CRITERIA

Table 1. Application of bandwidth to simulation fidelity

Criteria for simulator delay limits:
How to combine visual and motion cues?
Match visual and motion (rather than each as fast as possible)
How much handling-qualities fidelity for transfer of training?
Do not allow stick to visual BW worse than Level 2 (or match the helicopter)

Table 2. SIMDUCE: calibration of visual cue fidelity

Obtain VCR as for UCE except:

Simulator, not flight

Day, not degraded visual environment (DVE)

Task performance standards for day, not DVE
Rating is SIMulatorDayUCE (SIMDUCE)

Should be 1 if cues are as good as flight

If2o0r3:

Fidelity is equivalent to Level 2 (or 3)
Treat same as degradation due to delays
Disadvantages for FAA application:
Requires a Level [ rate response model for evaluation
Method requires subjective pilot ratings

MR. KEY: What will happen is if you saturate you
will have to drive this gain down, otherwise you will be
bumping into the stops all the time when you do
maneuvers.

MR. GREEN: Is that self-adaptive, though?

MR. KEY: No, it is not. How do we set these things?
Well, until Dick Bray retired, he did it. Now we ask him
to do it even though he has retired. One of the motivations
for getting these data and doing this experiment is to come
up with a more systematic way of setting these washout
parameters. I don’t think we have good answers yet.

MR. HUTCHINSON: Would you like to suggest a
time difference for the approximate cuing between the
motion and visual? We all know that motion should pre-
cede the visual, but do you have any specific time
element?

MR. KEY: You say you know the motion should pre-
cede the visual? Well, on the VMS we could make the
visual faster than the motion, but would have to slow the
visual response to make the motion faster. In terms of
pure delay, I do not think visual should be slower than any
motion axis. Overall, it would be nice if we could get the
phase line to lie along the aircraft model through this

region (1 to 3 rad/sec) and increase the gain somewhat. I
think we are trying to minimize the phase and gain distor-
tions, that is, to minimize the gain reduction and to mini-
mize the phase lead or lag. So whatever you can do to
make the gain and phase of the motion and visual match
the model is desirable.

MR. CARDULLO: I was confused by something you
said—that the motion was always slower than the visual,
yet according to the numbers that you gave, in two
degrees of freedom, the motion has actually got less delay
than the visual. You quoted 80 msec for the visual, and in
pitch and roll I think you quoted 70 msec for the motion.

MR. KEY: That is true. What I thought I said was
that we can compensate for the visual. There is a neat
scheme for generating lead to drive the CGI. So we can
compensate the visual down to zero.

MR. CARDULLQO: But the delay is still there; you
just compensate the phase, essentially. You could use that
in motion too.

MR. KEY: No you can’t. You can’t do it to the
motion.

DR. TISCHLER: Delay compensation will produce
side bands at high frequency. Visual electronics is one
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thing; in fact, in some cases even it will shudder. If we try
to put similar lead through a motion system, I think it
would go unstable.

MR. CARDULLO: Is that because of the high-
frequency anomaly that McFarland predicts?

MR. KEY: Yes. If you take McFarland’s prediction
and get into very high frequency inputs or turbulence,
then things do break up. So there is a limit to the fre-
quency range that you can use it over. And like Mark
[Tischler] was saying, when you try to push it through a
motion base, that frequency comes down into the usable
range. So it can’t be done to the motion.

MR. MITCHELL: There is lead compensation
already on the VMS, even for those numbers. They com-
pensated what they could to make up for delays to begin
with. The numbers are a lot worse without lead
compensation.

MR. KEY: At 1 rad/sec we already have 45° of phase
lead.

MR. DUVAL: We experimented with a visual lead
technique when we tied Flight Lab into the Fort Ord
trainer last year. And what we found was that it really did
a good job, as long as the pilot’s motion was continuous.
But you still sense the transport delay at the onset when
you had the first discontinuity of something abrupt. The
lead certainly could not deal with that. Does that initial
discontinuity affect the pilot’s perception of what’s
going on?
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MR. KEY: Well, it sure would if it was there. But
you were driving a different system through different sets
of equations with the different algorithm. A lot of people
have used this without noticing too much effect. In the
last simulation having a high bandwidth requirement, we
only compensated the visual down to match that motion,
that is, 70-msec delay on the motion; we did not go all the
way to zero. So it is much smoother. But yes, if you push
it to far, it will get noisy.
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